Skip to content

Data Columns

albert.collections.data_columns.DataColumnCollection

DataColumnCollection(*, session: AlbertSession)

Bases: BaseCollection

DataColumnCollection is a collection class for managing DataColumn entities in the Albert platform.

Methods:

Name Description
get_by_name

Get a data column by its name.

get_by_id

Get a data column by its ID.

list

Lists data column entities with optional filters.

create

Create a new data column entity.

delete

Delete a data column entity.

update

Update a data column entity.

Attributes:

Name Type Description
base_path
Source code in src/albert/collections/data_columns.py
def __init__(self, *, session: AlbertSession):
    """Initialize the DataColumnCollection with the provided session."""
    super().__init__(session=session)
    self.base_path = f"/api/{DataColumnCollection._api_version}/datacolumns"

base_path

base_path = f'/api/{_api_version}/datacolumns'

get_by_name

get_by_name(*, name) -> DataColumn | None

Get a data column by its name.

Parameters:

Name Type Description Default
name str

The name of the data column to get.

required

Returns:

Type Description
DataColumn | None

The data column object on match or None

Source code in src/albert/collections/data_columns.py
def get_by_name(self, *, name) -> DataColumn | None:
    """
    Get a data column by its name.

    Parameters
    ----------
    name : str
        The name of the data column to get.

    Returns
    -------
    DataColumn | None
        The data column object on match or None
    """
    for dc in self.list(name=name):
        if dc.name.lower() == name.lower():
            return dc
    return None

get_by_id

get_by_id(*, id) -> DataColumn

Get a data column by its ID.

Parameters:

Name Type Description Default
id str

The ID of the data column to get.

required

Returns:

Type Description
DataColumn | None

The data column object on match or None

Source code in src/albert/collections/data_columns.py
def get_by_id(self, *, id) -> DataColumn:
    """
    Get a data column by its ID.

    Parameters
    ----------
    id : str
        The ID of the data column to get.

    Returns
    -------
    DataColumn | None
        The data column object on match or None
    """
    response = self.session.get(f"{self.base_path}/{id}")
    dc = DataColumn(**response.json())
    return dc

list

list(
    *,
    order_by: OrderBy = DESCENDING,
    ids: str | list[str] | None = None,
    name: str | list[str] | None = None,
    exact_match: bool | None = None,
    default: bool | None = None,
    start_key: str | None = None,
    limit: int = 100,
    return_full: bool = True,
) -> Iterator[DataColumn]

Lists data column entities with optional filters.

Parameters:

Name Type Description Default
order_by OrderBy

The order by which to sort the results, by default OrderBy.DESCENDING.

DESCENDING
ids str | list[str] | None

Data column IDs to filter the search by, default None.

None
name Union[str, None]

The name of the tag to filter by, by default None.

None
exact_match bool

Whether to match the name exactly, by default True.

None
default bool

Whether to return only default columns, by default None.

None
return_full bool

Whether to make additional API call to fetch the full object, by default True

True

Returns:

Type Description
Iterator[DataColumn]

An iterator of DataColumns matching the provided criteria.

Source code in src/albert/collections/data_columns.py
def list(
    self,
    *,
    order_by: OrderBy = OrderBy.DESCENDING,
    ids: str | list[str] | None = None,
    name: str | list[str] | None = None,
    exact_match: bool | None = None,
    default: bool | None = None,
    start_key: str | None = None,
    limit: int = 100,
    return_full: bool = True,
) -> Iterator[DataColumn]:
    """
    Lists data column entities with optional filters.

    Parameters
    ----------
    order_by : OrderBy, optional
        The order by which to sort the results, by default OrderBy.DESCENDING.
    ids: str | list[str] | None, optional
        Data column IDs to filter the search by, default None.
    name : Union[str, None], optional
        The name of the tag to filter by, by default None.
    exact_match : bool, optional
        Whether to match the name exactly, by default True.
    default : bool, optional
        Whether to return only default columns, by default None.
    return_full : bool, optional
        Whether to make additional API call to fetch the full object, by default True

    Returns
    -------
    Iterator[DataColumn]
        An iterator of DataColumns matching the provided criteria.
    """

    def deserialize(items: list[dict]) -> Iterator[DataColumn]:
        if return_full:
            for item in items:
                id = item["albertId"]
                try:
                    yield self.get_by_id(id=id)
                except AlbertHTTPError as e:
                    logger.warning(f"Error fetching Data Column '{id}': {e}")
        else:
            yield from (DataColumn(**item) for item in items)

    params = {
        "limit": limit,
        "orderBy": order_by.value,
        "startKey": start_key,
        "name": [name] if isinstance(name, str) else name,
        "exactMatch": json.dumps(exact_match) if exact_match is not None else None,
        "default": json.dumps(default) if default is not None else None,
        "dataColumns": [ids] if isinstance(ids, str) else ids,
    }
    return AlbertPaginator(
        mode=PaginationMode.KEY,
        path=self.base_path,
        session=self.session,
        params=params,
        deserialize=deserialize,
    )

create

create(*, data_column: DataColumn) -> DataColumn

Create a new data column entity.

Parameters:

Name Type Description Default
data_column DataColumn

The data column object to create.

required

Returns:

Type Description
DataColumn

The created data column object.

Source code in src/albert/collections/data_columns.py
def create(self, *, data_column: DataColumn) -> DataColumn:
    """
    Create a new data column entity.

    Parameters
    ----------
    data_column : DataColumn
        The data column object to create.

    Returns
    -------
    DataColumn
        The created data column object.
    """
    payload = [data_column.model_dump(by_alias=True, exclude_unset=True, mode="json")]
    response = self.session.post(self.base_path, json=payload)

    return DataColumn(**response.json()[0])

delete

delete(*, id: str) -> None

Delete a data column entity.

Parameters:

Name Type Description Default
id str

The ID of the data column object to delete.

required

Returns:

Type Description
None
Source code in src/albert/collections/data_columns.py
def delete(self, *, id: str) -> None:
    """
    Delete a data column entity.

    Parameters
    ----------
    id : str
        The ID of the data column object to delete.

    Returns
    -------
    None
    """
    self.session.delete(f"{self.base_path}/{id}")

update

update(*, data_column: DataColumn) -> DataColumn

Update a data column entity.

Parameters:

Name Type Description Default
data_column DataColumn

The updated data column object. The ID must be set and match an existing data column.

required

Returns:

Type Description
DataColumn

The updated data column object as registered in Albert.

Source code in src/albert/collections/data_columns.py
def update(self, *, data_column: DataColumn) -> DataColumn:
    """Update a data column entity.

    Parameters
    ----------
    data_column : DataColumn
        The updated data column object. The ID must be set and match an existing data column.

    Returns
    -------
    DataColumn
        The updated data column object as registered in Albert.
    """
    existing = self.get_by_id(id=data_column.id)
    payload = self._generate_patch_payload(
        existing=existing,
        updated=data_column,
    )
    payload_dump = payload.model_dump(mode="json", by_alias=True)
    for i, change in enumerate(payload_dump["data"]):
        if not self._is_metadata_item_list(
            existing_object=existing,
            updated_object=data_column,
            metadata_field=change["attribute"],
        ):
            change["operation"] = "update"
            if "newValue" in change and change["newValue"] is None:
                del change["newValue"]
            if "oldValue" in change and change["oldValue"] is None:
                del change["oldValue"]
            payload_dump["data"][i] = change
    if len(payload_dump["data"]) == 0:
        return data_column
    for e in payload_dump["data"]:
        self.session.patch(
            f"{self.base_path}/{data_column.id}",
            json={"data": [e]},
        )
    return self.get_by_id(id=data_column.id)